China supplier High Performance Conveyor Side Guide Roller for Belt Conveyor

Product Description

Conveyor roller Steel roller for Belt conveyor

CONVEYOR ROLLER
Conveyor roller is an important component, types and large quantities. It accounts for the total cost of a conveyor 35%, to withstand more than 70% of the resistance, so the quality of roller is particularly important. 
Our roller has Minimal rtating inertia, reasonable structure, reliable tightness, flexible rotating, simple dismounting, easy maintained, long operational life, etc. Also we can do as customer request.

1.Type:
Carrying, return

2.Conveyor type:
DTII DTII(A) TD75

3.Application:
Used in coal mine, power plant, cement plant, port and so on

4.Details:
Pipe Material : Q235 carbon steel
Pipe  Diameter : 60-219mm
Pipe Length:  150mm ~ 3500 mm
 

Shaft Material : A3 / 45# steel 

Shaft Diameter:  20 25 mm

Shaft end type:DTII TD75 flat

Bearing:6204,6205,6305,6306,6307
Bearing brand: ZWZ HRB SK NSK

Welding:Automatic double end weld bearing housing

Surface:Electric static spraying painting

Color:Any color as reuqest

5.Specification:
 

Standard Diameter Length Scope(mm) Bearings Type(Min-Max) Shell Wall Thickness
mm Inch
63.5 2 1/2 150-3500 6204 2.0mm-3.75mm
76 3 150-3500 6204 205 2.0mm-4.0mm
89 3 1/3 150-3500 6204 205 2.0mm-4.0mm
102 4 150-3500 6204 205 305 2.5mm-4.0mm
108 4 1/4 150-3500 6204 205 305 306 2.5mm-4.0mm
114 4 1/2 150-3500 6205 206 305 306 2.5mm-4.5mm
127 5 150-3500 6204 205 305 306 2.5mm-4.5mm
133 5 1/4 150-3500 6205 206 207 305 306 2.5mm-4.5mm
140 5 1/2 150-3500 6205 206 207 305 306 3.5mm-4.5mm
152 6 150-3500 6205 206 207 305 306 307 308 3.0mm-4.5mm
159 6 1/4 150-3500 6205 206 207 305 306 307 308 3.0mm-4.5mm
165 6 1/2 150-3500 6207 305 306 307 308 3.5mm-6.0mm
177.8 7 150-3500 6207 306 35718 309 3.5mm-6.0mm
190.7 7 1/2 150-3500 6207 306 35718 309 4.0mm-6.0mm
194 7 5/8 150-3500 6207 307 308 309 310 4.0mm-6.0mm
219 8 5/8 150-3500 6308 309 310 4.0mm-6.0mm
 

6.Workshop:

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Steel
Application: Chemical Industry, Grain Transportation, Mining Transport, Power Plant, Quarry
Structure: Spring Plate Type Roller
Samples:
US$ 0.01/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

guide roller

Can you explain the impact of guide rollers on the overall efficiency of material handling systems?

Guide rollers play a significant role in the overall efficiency of material handling systems. Here’s a detailed explanation of their impact:

  • Precise Material Movement:

Guide rollers are designed to guide and support the movement of materials along a desired path. By providing a stable and controlled surface for material conveyance, guide rollers ensure precise movement and positioning. This precision minimizes the risk of material deviation, misalignment, or collisions, allowing for smooth and efficient material flow within the system. Accurate material movement enables efficient processing, reduces downtime, and enhances overall productivity.

  • Reduced Friction and Energy Consumption:

Well-designed guide rollers with low-friction surfaces can significantly reduce the amount of energy required for material handling. By minimizing friction between the guide rollers and the conveyed materials, less power is needed to move the materials along the desired path. This reduction in energy consumption leads to improved energy efficiency and lower operational costs. Additionally, reduced friction helps extend the service life of the guide rollers by minimizing wear and heat generation.

  • Enhanced System Throughput:

Efficient guide rollers contribute to increased system throughput in material handling operations. By facilitating smooth and consistent material flow, guide rollers help eliminate bottlenecks and optimize the overall speed and capacity of the system. When materials can be conveyed quickly and reliably, the system can handle higher volumes of materials, leading to improved productivity and throughput. Guide rollers also enable efficient sorting, merging, or diverting of materials, further enhancing system throughput and flexibility.

  • Improved Product Quality:

The use of guide rollers in material handling systems helps maintain product quality and integrity. By guiding materials along a predetermined path, guide rollers prevent material damage, deformation, or contamination that can occur due to uncontrolled movement or collisions. This results in better product quality and reduces the risk of rework or product rejection. Guide rollers also ensure consistent material positioning, which is crucial for precision operations such as assembly, packaging, or quality control.

  • Minimized Downtime and Maintenance:

Efficient guide rollers can contribute to reduced downtime and maintenance requirements in material handling systems. When guide rollers are properly designed, installed, and maintained, they operate smoothly and reliably, minimizing the risk of failures or disruptions. High-quality guide rollers with durable materials and components can withstand the demands of continuous operation and heavy loads, reducing the need for frequent replacements or repairs. This leads to increased system uptime, reduced maintenance costs, and improved overall equipment effectiveness (OEE).

  • Worker Safety and Ergonomics:

Guide rollers contribute to a safer and more ergonomic working environment in material handling systems. By guiding materials along a predetermined path, guide rollers help prevent material spillage, which can create tripping hazards or pose risks to workers. Additionally, guide rollers facilitate smooth and controlled material movement, reducing the physical strain on workers during manual material handling tasks. This promotes a safer and more comfortable workplace, minimizing the risk of injuries and improving overall worker productivity.

In summary, guide rollers have a significant impact on the overall efficiency of material handling systems. They enable precise material movement, reduce friction and energy consumption, enhance system throughput, improve product quality, minimize downtime and maintenance, and contribute to worker safety and ergonomics. By selecting and maintaining high-quality guide rollers, material handling operations can achieve optimal efficiency, productivity, and cost-effectiveness.

guide roller

What are idler rollers, and how do they function in conveyor systems?

Idler rollers, also known as conveyor idlers or simply idlers, are an essential component of conveyor systems. They play a crucial role in supporting and guiding the conveyor belt or other conveying surfaces, facilitating the efficient movement of materials. Idler rollers are typically cylindrical in shape and are positioned along the length of the conveyor system.

The primary function of idler rollers is to support and shape the conveyor belt. They provide a stable platform for the belt to rest on and help maintain its proper alignment and tension. Idler rollers are strategically placed at various intervals along the conveyor, creating a series of support points. These support points distribute the weight of the conveyed materials and minimize the sagging or deformation of the belt, ensuring smooth and consistent material movement.

Idler rollers also help to reduce friction between the belt and the supporting structure of the conveyor system. By allowing the belt to roll over them, they minimize the contact area and the associated frictional resistance. This reduces power requirements and energy consumption, contributing to the overall efficiency of the system.

Another important function of idler rollers is to guide the conveyor belt and prevent it from deviating from its intended path. They are designed with precise dimensions and smooth surfaces to ensure proper belt tracking. The alignment of idler rollers is critical for maintaining the belt’s centered position within the conveyor frame. Well-aligned idler rollers help prevent material spillage, belt misalignment, and potential damage to the system.

Idler rollers are available in various designs and configurations to suit different conveyor system applications. Some common types of idler rollers include:

  • Troughing Idlers: These idlers have a concave shape and are used to support the conveyor belt on the carrying side. They help contain the material being conveyed, preventing it from spilling off the sides of the belt.
  • Impact Idlers: Impact idlers are designed to absorb the impact of heavy or sharp-edged materials as they fall onto the conveyor belt. They are often positioned in the loading zone to protect the belt and other components from damage.
  • Return Idlers: Return idlers support the return side of the conveyor belt and help maintain its tension. They are positioned beneath the belt to support its lower run and assist in belt tracking.
  • Training Idlers: Training idlers are used to correct belt misalignment and ensure proper tracking. They are typically adjustable and can be positioned to apply lateral forces to the belt, guiding it back to the center of the conveyor frame.

In summary, idler rollers are integral components of conveyor systems. They provide support, shape, and guide the conveyor belt, ensuring smooth material movement and maintaining proper belt alignment. By minimizing friction and facilitating efficient belt tracking, idler rollers contribute to the overall performance, reliability, and efficiency of conveyor systems.

guide roller

What are the different types and configurations of guide rollers available in the market?

In the market, there are various types and configurations of guide rollers available to cater to different industrial applications. Here’s a detailed explanation of the different types and configurations:

  • Plain Guide Rollers:

Plain guide rollers, also known as cylindrical guide rollers, have a smooth surface without any grooves or flanges. They are commonly used when minimal guidance is required, and the primary function is to support and facilitate smooth movement. Plain guide rollers are suitable for applications where objects or materials need to be guided without significant lateral forces or directional control.

  • Flanged Guide Rollers:

Flanged guide rollers have built-in flanges on one or both sides of the roller. The flanges act as barriers to prevent objects from deviating or slipping off the roller. They provide enhanced lateral guidance and help maintain proper alignment during material handling. Flanged guide rollers are commonly used in conveyor systems, material transport applications, and scenarios where precise tracking and alignment are critical.

  • Grooved Guide Rollers:

Grooved guide rollers have one or more grooves along their circumference. These grooves provide additional guidance and increase the contact area between the roller and the object being transported. The grooves help prevent lateral movement and improve the overall stability of material handling. Grooved guide rollers are commonly used in applications that involve curved tracks, cornering, or situations where objects may be subjected to lateral forces.

  • Tapered Guide Rollers:

Tapered guide rollers have a tapered or conical shape, with a larger diameter at one end and a smaller diameter at the other. The tapered design allows for smooth transitions and alignment when objects move from one roller to another. Tapered guide rollers are often used in conveyor systems, sorting processes, and applications where objects need to be guided through changing directions or different stages of material handling.

  • Cam Follower Guide Rollers:

Cam follower guide rollers have a specialized design with a stud or shaft attached to the roller. They are used in applications where the guide roller needs to follow a specific cam profile or track. The cam follower design allows for precise and controlled movement along the cam surface, making them suitable for applications such as automation, indexing mechanisms, and machinery that require synchronized motion.

  • Adjustable Guide Rollers:

Adjustable guide rollers are designed with a mechanism that allows for easy adjustment of the roller’s position, height, or angle. They offer flexibility in aligning and positioning the guide rollers to accommodate different material handling requirements or changing operational conditions. Adjustable guide rollers are commonly used in conveyor systems, assembly lines, and applications where frequent adjustments or customization are necessary.

It’s important to note that these are general categories, and there can be variations and combinations of different features and configurations available in the market. The choice of guide roller type and configuration depends on factors such as the specific application, material handling needs, load requirements, and environmental conditions.

In summary, the market offers different types and configurations of guide rollers, including plain guide rollers, flanged guide rollers, grooved guide rollers, tapered guide rollers, cam follower guide rollers, and adjustable guide rollers. Each type and configuration caters to specific material handling needs and provides varying levels of guidance, support, and control.

China supplier High Performance Conveyor Side Guide Roller for Belt Conveyor  China supplier High Performance Conveyor Side Guide Roller for Belt Conveyor
editor by CX 2024-03-08